81 research outputs found

    Explainable Machine Learning for Real-Time Hypoglycemia and Hyperglycemia Prediction and Personalized Control Recommendations

    Get PDF
    BACKGROUND: The occurrences of acute complications arising from hypoglycemia and hyperglycemia peak as young adults with type 1 diabetes (T1D) take control of their own care. Continuous glucose monitoring (CGM) devices provide real-time glucose readings enabling users to manage their control proactively. Machine learning algorithms can use CGM data to make ahead-of-time risk predictions and provide insight into an individual’s longer term control. METHODS: We introduce explainable machine learning to make predictions of hypoglycemia (270 mg/dL) up to 60 minutes ahead of time. We train our models using CGM data from 153 people living with T1D in the CITY (CGM Intervention in Teens and Young Adults With Type 1 Diabetes)survey totaling more than 28 000 days of usage, which we summarize into (short-term, medium-term, and long-term) glucose control features along with demographic information. We use machine learning explanations (SHAP [SHapley Additive exPlanations]) to identify which features have been most important in predicting risk per user. RESULTS: Machine learning models (XGBoost) show excellent performance at predicting hypoglycemia (area under the receiver operating curve [AUROC]: 0.998, average precision: 0.953) and hyperglycemia (AUROC: 0.989, average precision: 0.931) in comparison with a baseline heuristic and logistic regression model. CONCLUSIONS: Maximizing model performance for glucose risk prediction and management is crucial to reduce the burden of alarm fatigue on CGM users. Machine learning enables more precise and timely predictions in comparison with baseline models. SHAP helps identify what about a CGM user’s glucose control has led to predictions of risk which can be used to reduce their long-term risk of complications

    Physically fit or physically literate? Children with special educational needs understanding of physical education

    Get PDF
    The role of physical literacy within physical education (PE) has become a widely debated topic in recent years. Its role in educating children about physicality through embodiment, skill acquisition and reading the environment is argued to be of great benefit to children. However, whether children understand the role of PE in the development of these competencies is not clear, and this is even truer for children who have special educational needs (SEN). Drawing on qualitative phenomenological data from 30 children in key stages 2 and three (7 to 14 years of age) who have SEN, this paper explores notions of physical fitness and physical literacy as understood by children in PE lessons. It aims to gain insight into the ways that children understand the purpose of PE, and places these perceptions within a physical literacy framework, using the National Curriculum for PE (NCPE) as a foundation. Findings demonstrate that children with SEN perceive PE as a means for improving physical fitness, whereas concepts surrounding physical literacy appear to be lost. The paper concludes by making recommendations for factoring physical literacy components more forcibly into the PE curriculum, and through initial teacher training and continued professional development

    The rise of consumer health wearables: promises and barriers

    Get PDF
    Will consumer wearable technology ever be adopted or accepted by the medical community? Patients and practitioners regularly use digital technology (e.g., thermometers and glucose monitors) to identify and discuss symptoms. In addition, a third of general practitioners in the United Kingdom report that patients arrive with suggestions for treatment based on online search results. However, consumer health wearables are predicted to become the next “Dr Google.” One in six (15%) consumers in the United States currently uses wearable technology, including smartwatches or fitness bands. While 19 million fitness devices are likely to be sold this year, that number is predicted to grow to 110 million in 2018. As the line between consumer health wearables and medical devices begins to blur, it is now possible for a single wearable device to monitor a range of medical risk factors. Potentially, these devices could give patients direct access to personal analytics that can contribute to their health, facilitate preventive care, and aid in the management of ongoing illness. However, how this new wearable technology might best serve medicine remains unclea

    Intraarticular cortisone injection for osteoarthritis of the hip. Is it effective? Is it safe?

    Get PDF
    Osteoarthritis of the hip is a significant source of morbidity in the elderly. Treatment guidelines are available for the management of hip osteoarthritis, but these do not address the application of intraarticular corticosteroid injection. The intraarticular injection of corticosteroid is used in the management of other large joint osteoarthritic diseases and is well studied in the knee, however, this data cannot be used to make sound clinical decisions regarding its use for hip osteoarthritis. There are also concerns regarding the safety of this modality. Review of the published literature reveals that there are eight trials examining the efficacy of intraarticular corticosteroid injection for hip osteoarthritis and of these only four are randomized controlled trials. In general, the available literature demonstrates a short-term reduction of pain with corticosteroid injection and is indicated for patients refractory to non-pharmacologic or analgesic and NSAID therapy. The use of radiologic-guidance is recommended and, with proper sterile technique, the risk of adverse outcomes is very low. Future randomized controlled trials are needed to further examine the efficacy and safety of intraarticular corticosteroid injection for hip osteoarthritis

    The role of ATP and adenosine in the brain under normoxic and ischemic conditions

    Get PDF
    By taking advantage of some recently synthesized compounds that are able to block ecto-ATPase activity, we demonstrated that adenosine triphosphate (ATP) in the hippocampus exerts an inhibitory action independent of its degradation to adenosine. In addition, tonic activation of P2 receptors contributes to the normally recorded excitatory neurotransmission. The role of P2 receptors becomes critical during ischemia when extracellular ATP concentrations increase. Under such conditions, P2 antagonism is protective. Although ATP exerts a detrimental role under ischemia, it also exerts a trophic role in terms of cell division and differentiation. We recently reported that ATP is spontaneously released from human mesenchymal stem cells (hMSCs) in culture. Moreover, it decreases hMSC proliferation rate at early stages of culture. Increased hMSC differentiation could account for an ATP-induced decrease in cell proliferation. ATP as a homeostatic regulator might exert a different effect on cell trophism according to the rate of its efflux and receptor expression during the cell life cycle. During ischemia, adenosine formed by intracellular ATP escapes from cells through the equilibrative transporter. The protective role of adenosine A1 receptors during ischemia is well accepted. However, the use of selective A1 agonists is hampered by unwanted peripheral effects, thus attention has been focused on A2A and A3 receptors. The protective effects of A2A antagonists in brain ischemia may be largely due to reduced glutamate outflow from neurones and glial cells. Reduced activation of p38 mitogen-activated protein kinases that are involved in neuronal death through transcriptional mechanisms may also contribute to protection by A2A antagonism. Evidence that A3 receptor antagonism may be protective after ischemia is also reported

    University–industry collaboration: using meta-rules to overcome barriers to knowledge transfer

    Get PDF
    This is the final version of the article. Available from Springer Verlag via the DOI in this record.University–industry knowledge transfer is an important source wealth of creation for all partners; however, the practical management of this activity within universities is often hampered by procedural rigidity either through the absence of decision-making protocols to reconcile conflicting priorities or through the inconsistent implementation of existing policies. This is problematic, since it can impede operational effectiveness, prevent inter-organisational knowledge-creation and hamper organisational learning. This paper addresses this issue by adopting a cross-discipline approach and presenting meta-rules as a solution to aid organisational decision making. It is proposed that meta-rules can help resolve tensions arising from conflicting priorities between academics, knowledge transfer offices and industry and help facilitate strategic alignment of processes and policies within and between organisations. This research contributes to the growing debate on the strategic challenges of managing knowledge transfer and presents meta-rules as a practical solution to facilitate strategic alignment of internal and external stakeholder tensions. Meta-rules has previously only been applied in a computer intelligence context however, this research proves the efficacy of meta rules in a university–industry knowledge transfer context. This research also has practical implications for knowledge transfer office managers who can use meta-rules to help overcome resource limitations, conflicting priorities and goals of diverse internal and external stakeholders
    corecore